miércoles, 9 de febrero de 2011

microprocesador

El microprocesador es el cerebro del ordenador. Se encarga de realizar todas las operaciones de cálculo y de controlar lo que pasa en el ordenador recibiendo información y dando órdenes para que los demás elementos trabajen. Es el jefe del equipo y, a diferencia de otros jefes, es el que más trabaja, dependiendo del tipo de procesador y su velocidad se obtendrá un mejor o peor rendimiento.

MARCAS Y GENERACIONES:





El procesador más poderoso es el Intel Core 2 Extreme QX6850, que tiene:

Procesador: Quad Core (4 Núcleos)
Velocidad del Reloj: 3000MHz (3.0GHz)
Velocidad del Bus: 1066MHz
L2 Cache: 8 MB (4 MB por par de núcleos)


Intel Xeon 7041 que tiene:

3 GHz de velocidad (Clock Frequenci)
800MHz FSB (Bus Frontal)
L2 Cache 2x2MB
L3 Cache 16MB


Arquitectura:

El microprocesador tiene una arquitectura parecida a la computadora digital. En otras palabras, el microprocesador es como la computadora digital porque ambos realizan cálculos bajo un programa de control. Consiguientemente, la historia de la computadora digital nos ayudará a entender el microprocesador. El microprocesador hizo posible la fabricación de potentes calculadoras y de muchos otros productos. El microprocesador utiliza el mismo tipo de lógica que es usado en la unidad procesadora central (CPU) de una computadora digital. El microprocesador es algunas veces llamado unidad microprocesadora (MPU). En otras palabras, el microprocesador es una unidad procesadora de datos. En un microprocesador podemos diferenciar diversas partes:

El encapsulado: es lo que rodea a la oblea de silicio en si, para darle consistencia, impedir su deterioro (por ejemplo, por oxidación por el aire) y permitir el enlace con los conectores externos que lo acoplaran a su zócalo a su placa base.

La memoria cache: es una memoria ultrarrápida que emplea el micro para tener a mano ciertos datos que predeciblemente serán utilizados en las siguientes operaciones sin tener que acudir a la memoria RAM reduciendo el tiempo de espera. Por ejemplo: en una biblioteca, en lugar de estar buscando cierto libro a través de un banco de ficheros de papel se utiliza la computadora, y gracias a la memoria cache, obtiene de manera rápida la información. Todos los micros compatibles con PC poseen la llamada cache interna de primer nivel o L1; es decir, la que está más cerca del micro, tanto que está encapsulada junto a él. Los micros más modernos (Pentium III Coppermine, athlon Thunderbird, etc.) incluyen también en su interior otro nivel de caché, más grande aunque algo menos rápida, la caché de segundo nivel o L2 e incluso memoria caché de nivel 3, o L3.

Coprocesador Matemático: o correctamente la FPU (Unidad de coma flotante). Que es la parte del micro especializada en esa clase de cálculos matemáticos, antiguamente estaba en el exterior del procesador en otro chip. Esta parte esta considerada como una parte "lógica" junto con los registros, la unidad de control, memoria y bus de datos

Los registros: son básicamente un tipo de memoria pequeña con fines especiales que el micro tiene disponible para algunos usos particulares. Hay varios grupos de registros en cada procesador. Un grupo de registros esta diseñado para control del programador y hay otros que no son diseñados para ser controlados por el procesador pero que CPU los utiliza en algunas operaciones, en total son treinta y dos registros.

La memoria: es el lugar donde el procesador encuentra las instrucciones de los programas y sus datos. Tanto los datos como las instrucciones están almacenados en memoria, y el procesador las toma de ahí. La memoria es una parte interna de la computadora y su función esencial es proporcionar un espacio de trabajo para el procesador.

Puertos: es la manera en que el procesador se comunica con el mundo externo. Un puerto es parecido a una línea de teléfono. Cualquier parte de la circuitería de la computadora con la cual el procesador necesita comunicarse, tiene asignado un número de puerto que el procesador utiliza como un número de teléfono para llamar al circuito o a partes especiales.

    microprosesadores para portatiles

    A día de hoy, diciembre del 2009, comprar un ordenador no es tarea fácil, sobre todo a la hora de decidirse por los componentes. Hay algunos que no tienen mucha dificultad: Disco duro, memoria RAM, junto con la capacidad y la velocidad de transferencia, no hay mucho que elegir.

    Diferente es con los microprocesadores: Cada vez hay más y más en el mercado para llenar todos los nichos del mercado: Desde bajo coste y bajas prestaciones hasta alto coste y mayores prestaciones.

    - Intel Azom 270: Son los micros de bajo coste y bajo rendimiento de Intel, utilizados en los Netbook, pequeños portátiles aptos para aplicaciones domésticas y ofimática, que se pueden encontrar en las tiendas por precios inferiores a los 300.
    - El Intel Atom 280 es similar al 270 tan sólo que con mejores prestaciones al tener una velocidad de reloj un poco superior.
    - Celeron: Es una antigua familia de microprocesadores que se vienen fabricando desde el 1998, aunque poco tienen que ver los actuales con aquellos. Basados en la microarquitectura Intel Core. Está disponible en versión de un núcleo y de dos núcleos y tiene menor caché L2 que sus hermanos mayores. (Los T3xx y los T1xx tienen dos núcleos)

    - Dual Core, Intel los llama también sencillamente como “Pentium”, tienen un rendimiento por ciclo de reloj superior a los Celeron, pero inferior a los Core 2. La familia T4xxx tiene 2 núcleos y 1 MB de caché L2, y la SU4xxx 2 núcleos y 2 MB de caché a parte de tener un voltaje de funcionamiento menor.
    - Core 2 Solo, están diseñados exclusivamente para aplicaciones portátiles con una baja disipación de potencia. Tiene un sólo núcleo y 3 MB de caché L2.
    - Core 2 Duo, a día de hoy son los micros más potentes en el mercado para portátiles, (por lo menos mientras no lleguen los i7 a los portátiles). Todos tienen dos núcleos y caché L2 que varía entre 2 MB y 6 MB. Los más frecuentes que se montan ahora pertenecen a la familia T6xxx, T7xxx y T8xxx. El primer dígito 6, 7 y 8 indica la caché L2: 2, 3 ó 6 MB, mientras que el segundo dígito indica la velocidad del propio micro. La familia E8xxx es específica para los iMac. También hay algunas familias con núcleos más antiguos que utilizan la nomenclatura T5xxx, basados en un núcleo más antiguo (Meron vs. Penryn)

    En cuanto a AMD:
    - AMD Turion X2, AMD es el patito feo de los microprocesadores, siempre relegado al segundo puesto, si bien sus microprocesadores son también muy buenos. Tuvieron su época de gloria cuando el micro Athlon era mejor que sus rivales de Intel, ahora parecen ocupar una discreta segunda plaza y sus micros no son fáciles de encontrar. Los Turion son la versión de bajo consumo orientado a los portátiles del Athlon 64 X2

    Abiendo la aplicación Sisoft Sandra que permite comparar varios microprocesadores se puede ver:

    - Mi micro actual (Pentium 4 @ 2,53 Ghz y 512 kB de L2): 5,32 GIPS y 4,55 GFLOPS
    - Intel Core 2 Duo E6300 (1,86 Ghz y 2 MB L2): 15,84 GIPS y 12 GFLOPS
    - Intel Core 2 Duo E4300 (1,8 Ghz y 2 MB L2): 15,27 GIPS y 11,5 GFLOPS
    - Intel Core 2 Duo E6700 (2,66 Ghz y 4 MB L2): 22,63 GIPS y 17,13 GFLOPS
    - Intel Core 2 Duo X6800 (2,93 Ghz y 4 MB L2): 24,88 GIPS y 18,84 GFLOPS
    - Intel Core 2 Duo E8500 (3,17 Ghz y 6 MB L2): 24,7 GIPS y 23,13 GFLOPS
    - AMD Athlon 64 X2 5050e (2,6 Ghz y 2×1MB L2): 16,16 GIPS y 15,48 GFLOPS
    - Intel Core i7 (4 núcleos, 3,6 Ghz 4×256 kB L2, 8 MB L3): 90,88 GIPS y 81,15 GFLOPS.




    tipos de encapsulados



    DIP: Los pines se extienden a lo largo del encapsulado (en ambos lados) y tiene como todos los demas una muesca que indica el pin número 1. Este encapsulado básico fue el más utilizado hace unos años y sigue siendo el preferido a la hora de armar plaquetas por partes de los amantes de la electronica casera debido a su tamaño lo que facilita la soldadura. Hoy en día, el uso de este encapsulado (industrialmente) se limita a UVEPROM y sensores.

    SIP: Los pines se extienden a lo largo de un solo lado del encapsulado y se lo monta verticalmente en la plaqueta. La conseguiente reducción en la zona de montaje permite un densidad de montaje mayor a la que se obtiene con el DIP.

    PGA: Los multiples pines de conexión se situan en la parte inferior del encapsulado. Este tipo se utiliza para CPUs de PC y era la principal opción a la hora de considerar la eficiencia pin-capsula-espacio antes de la introducción de BGA. Los PGAs se fabricaron de plastico y ceramica, sin embargo actualmente el plastico es el mas utilizado, mientras que los PGAs de cerámica se utilizan para un pequeño número de aplicaciones.

    SOP: Los pines se diponen en los 2 tramos más largos y se extienden en una forma denominada “gull wing formation”, este es el principal tipo de montaje superficial y es ampliamente utilizado mespecialmente en los ámbitos de la microinformática, memorias y IC análogicos que utilizan un número relativamente pequeño de pines.


    TSOP: Simplemente una versión más delgada del encapsulado SOP.


    QFP: Es la versión mejorada del encapsulado SOP, donde los pines de conexión se extienden a lo largo de los cuatro bordes. Este es en la actualidad el encapsulado de montaje supeficial más popular, debido que permite un mayor número de pines.

    SOJ: Las puntas de los pines se extieden desde los dos bordes más largos dejando en la mitad una separación como si se tratase de 2 encapsulados en uno. Recibe éste nombre porque los pines se parecen a la letra “J” cuando se lo mira desde el costado. Fueron utilizados en los módulos de memoria SIMM.
    QFJ: Al igual que el encapsulado QFP, los pines se extienden desde los 4 bordes bordes.
    QFN: Es similar al QFP, pero con los pines situados en los cuatro bordes de la parte inferior del encapsulado. Este encapsulado puede hacerse en modelos de poca o alta densidad.
    TCP: El chip de silicio se encapsulan en forma de cintas de películas, se puede producir de distintos tamaños, el encapsualdo puede ser doblado. Se utilizan principalmente para los drivers de los LCD.
    BGA: Los terminales externos, en realidad esferas de soldadura, se situan en formato de tabla en la parte inferior del encapsulado. Este encapsulado puede obtener una alta densidad de pines, comparado con otros encapsulados como el QFP, el BGA presenta la menor probabilidad de montaje defectuosos en las plaquetas. Metodo casero para desoldar un encapsulado BGA.

    LGA: Es un encapsulado con electrodos alineados en forma de array en su parte inferior. Es adecuado para las operaciones donde se necesita alta velocidad debido a su baja inductancia. Además, en contraste con el BGA, no tiene esferas de soldadura por lo cual la altura de montaje puede ser reducida.

    Otros Encapsulados






    Métodos para enfriar los componentes de un computador

    Variadas técnicas son usadas en la actualidad para refrigerar componentes electrónicos, como lo son los microprocesadores, que fácilmente pueden alcanzar temperaturas tan altas que provoquen daño permanente si no son mantenidos a una temperatura adecuada de forma apropiada.
    1.Refrigeración por Aire

    La refrigeración pasiva es probablemente el método más antiguo y común para enfriar no sólo componentes electrónicos sino cualquier cosa. Así como dicen las abuelitas: “tomar el fresco”, la idea es que ocurra intercambio de calor entre el aire a temperatura ambiente y el elemento a enfriar, a temperatura mayor. El sistema es tan común que no es en modo alguno invención del hombre y la misma naturaleza lo emplea profusamente: miren por ejemplo a los elefantes que usan sus enormes orejas para mantenerse frescos, y no porque las usen de abanico sino porque éstas están llenas de capilares y el aire fresco enfría la sangre que por ellos circula.

    Refrigeración Pasiva por Aire

    Las principales ventajas de la disipación pasiva son su inherente simplicidad (pues se trata básicamente de un gran pedazo de metal), su durabilidad (pues carece de piezas móviles) y su bajo costo. Además de lo anterior, no producen ruido. La mayor desventaja de la disipación pasiva es su habilidad limitada para dispersar grandes cantidades de calor rápidamente. Los disipadores (heatsinks) modernos son incapaces de refrigerar efectivamente CPUs de gama alta, sin mencionar GPUs de la misma categoría sin ayuda de un ventilador.





    Los disipadores (heatsinks) modernos son usualmente fabricados en cobre o aluminio, materiales que son excelentes conductores de calor y que son relativamente baratos de producir. En particular, el cobre es bastante más caro que el aluminio por lo que los disipadores de cobre se consideran el formato premium mientras que los de aluminio son lo estándar. Sin embargo, si de verdad quisiéramos conductores premium podríamos usar plata para este fin, puesto que su conductividad térmica es mayor todavía. Por eso, aunque el cobre es sustancialmente más caro que el aluminio, es válido decir que ambos son materiales baratos… sólo piensen en la alternativa.

    Refrigeración Activa por Aire

    La refrigeración activa por aire es, en palabras sencillas, tomar un sistema pasivo y adicionar un elemento que acelere el flujo de aire a través de las aletas del heatsink. Este elemento es usualmente un ventilador aunque se han visto variantes en las que se utiliza una especie de turbina.





    Refrigeración Termoeléctrica (TEC)

    (Explicación tomada del Review “Amanda TEC Cooler”)

    En 1834 un frances llamado Juan Peltier (no es chiste, la traducción al español de Jean Peltier), descubrio que aplicando una diferencia electrica en 2 metales o semiconductores (de tipo p y n) unidas entre sí, se generaba una diferencia de temperaturas entre las uniones de estos. La figura de abajo muestra que las uniones p-n tienden a calentarse y las n-p a enfriarse.





    Refrigeración líquida (más conocida como Watercooling)

    Un método más complejo y menos común es la refrigeración por agua. El agua tiene un calor específico más alto y una mejor conductividad térmica que el aire, gracias a lo cual puede transferir calor más eficientemente y a mayores distancias que el gas. Bombeando agua alrededor de un procesador es posible remover grandes cantidades de calor de éste en poco tiempo, para luego ser disipado por un radiador ubicado en algún lugar dentro (o fuera) del computador. La principal ventaja de la refrigeración líquida, es su habilidad para enfriar incluso los componentes más calientes de un computador.




    La única diferencia entre AMD e Intel es la forma de su disipador, una es redonda y otra es cuadrada es por eso que la instalación del microprocesador es diferente, solo tendremos que sujetar de forma diferente el disipador de cada uno.

    El microprocesador tiene una arquitectura parecida a la computadora digital. En otras palabras, el microprocesador es como la computadora digital porque ambos realizan cálculos bajo un programa de control. Consiguientemente, la historia de la computadora digital nos ayudará a entender el microprocesador. El microprocesador hizo posible la fabricación de potentes calculadoras y de muchos otros productos. El microprocesador utiliza el mismo tipo de lógica que es usado en la unidad procesadora central (CPU) de una computadora digital. El microprocesador es algunas veces llamado unidad microprocesadora (MPU). En otras palabras, el microprocesador es una unidad procesadora de datos. En un microprocesador podemos diferenciar diversas partes:

    El encapsulado: es lo que rodea a la oblea de silicio en si, para darle consistencia, impedir su deterioro (por ejemplo, por oxidación por el aire) y permitir el enlace con los conectores externos que lo acoplaran a su zócalo a su placa base.

    La memoria cache: es una memoria ultrarrápida que emplea el micro para tener a mano ciertos datos que predeciblemente serán utilizados en las siguientes operaciones sin tener que acudir a la memoria RAM reduciendo el tiempo de espera. Por ejemplo: en una biblioteca, en lugar de estar buscando cierto libro a través de un banco de ficheros de papel se utiliza la computadora, y gracias a la memoria cache, obtiene de manera rápida la información. Todos los micros compatibles con PC poseen la llamada cache interna de primer nivel o L1; es decir, la que está más cerca del micro, tanto que está encapsulada junto a él. Los micros más modernos (Pentium III Coppermine, athlon Thunderbird, etc.) incluyen también en su interior otro nivel de caché, más grande aunque algo menos rápida, la caché de segundo nivel o L2 e incluso memoria caché de nivel 3, o L3.

    Coprocesador Matemático: o correctamente la FPU (Unidad de coma flotante). Que es la parte del micro especializada en esa clase de cálculos matemáticos, antiguamente estaba en el exterior del procesador en otro chip. Esta parte esta considerada como una parte "lógica" junto con los registros, la unidad de control, memoria y bus de datos.

    Los registros: son básicamente un tipo de memoria pequeña con fines especiales que el micro tiene disponible para algunos usos particulares. Hay varios grupos de registros en cada procesador. Un grupo de registros esta diseñado para control del programador y hay otros que no son diseñados para ser controlados por el procesador pero que CPU los utiliza en algunas operaciones, en total son treinta y dos registros.

    La memoria: es el lugar donde el procesador encuentra las instrucciones de los programas y sus datos. Tanto los datos como las instrucciones están almacenados en memoria, y el procesador las toma de ahí. La memoria es una parte interna de la computadora y su función esencial es proporcionar un espacio de trabajo para el procesador.

    Puertos: es la manera en que el procesador se comunica con el mundo externo. Un puerto es parecido a una línea de teléfono. Cualquier parte de la circuitería de la computadora con la cual el procesador necesita comunicarse, tiene asignado un número de puerto que el procesador utiliza como un número de teléfono para llamar al circuito o a partes especiales.

    Pasos a seguir para instalar un microprocesador:

    Primero tendremos que insertar el microprocesador en el motherboard, para ello verificaremos la posición de las patitas de nuestro chip y el slot del motherboard para que el mismo encaje de forma suave y perfecta (En el manual de la placa base o del microprocesador suele incluirse una imagen que indica como colocarlo). De ninguna manera forzar el microprocesador ya que si se doblan algunas de sus patitas (conectores) este no funcionara jamás.

    Colocar un poco de pasta térmica en el procesador (no tiene que cubrir todo el procesador) solo un poco es suficiente. Para darse una idea, una pequeña película del espesor de una hoja de cartulina es suficiente.

    Apoyar el disipador arriba del microchip y enganchar los soportes en el mother

    Atornillar y sujetar de forma firme el Disipador



    partes del microprosesador:

    unidad central de procesamiento está constituida, esencialmente, por registros, una unidad de control y una unidad aritmético lógica (ALU), aunque actualmente todo microprocesador también incluye una unidad de cálculo en coma flotante, (también conocida como coprocesador matemático o FPU), que permite operaciones por hardware con números decimales, elevando por ende notablemente la eficiencia que proporciona sólo la ALU con el cálculo indirecto a través de los clásicos números enteros

    La unidad de control de un microprocesador: es un circuito lógico que, como su nombre lo indica, controla la operación del microprocesador entero. En cierto modo, es el “cerebro dentro del cerebro”, ya que controla lo que pasa dentro del procesador, y el procesador a su vez controla el resto de la PC

    La unidad aritmética y lógica: maneja toda la toma de decisiones (los cálculos matemáticos y las funciones lógicas) que es realizada por el microprocesador.

    La unidad toma las instrucciones decodificadas por la unidad de control y las envía hacia fuera directamente o ejecuta el microcódigo apropiado para modificar los datos contenidos en sus registros. Los resultados son enviados al exterior a través de la BIU (o unidad de E/S) del microprocesador.

    La unidad del punto flotante: es una unidad de ejecución dedicada, diseñada para realizar las funciones matemáticas con números del punto flotante. Un número del punto flotante es cualquier número continuo, esto es no entero; cualquier número que requiere un punto decimal para ser representado es un número del punto flotante. Los enteros (y los datos almacenaron como enteros) se procesan usando la unidad de ejecución entera.

    Al hablar de Punto Flotante se describe una manera de expresar los valores, no como un tipo matemáticamente definido del número tal como un número entero, número racional, o número real. La esencia de un número de punto flotante es que su punto "flota " entre un número predefinido de dígitos significativos, igual a la notación científica, donde el punto decimal puede moverse entre diferentes posiciones del número.
    Bus de direcciones



    Es utilizado por el microprocesador para señalar la celda de memoria (o el dispositivo de E/S) con el que se quiere operar. El tipo de operación será de lectura o de escritura y los datos implicados viajarán por el bus de datos.

    Por él circula la expresión binaria de la dirección de memoria a la cual el microprocesador quiere acceder. Tiene sentido de flujo unidireccional desde el microprocesador hacia la memoria. Una vez localizados los datos perdidos, su transmisión hacia el microprocesador (o hacia donde sea) se hará a través del bus de datos.
    El ancho de este bus también es una medida de la potencia del microprocesador, ya que determina la cantidad de memoria a la que éste puede acceder, es decir, la cantidad de espacio direccionable. El espacio de direcciones es el rango de valores distintos que el microprocesador puede seleccionar. La cantidad máxima de direcciones disponibles será 2 a la n, siendo n el número de líneas del bus de direcciones


    Un bus de datos es un dispositivo mediante el cual al interior de una computadora se transportan datos e información relevante.

    El bus de control gobierna el uso y acceso a las líneas de datos y de direcciones. Como éstas líneas están compartidas por todos los componentes, tiene que proveerse de determinados mecanismos que controlen su utilización. Las señales de control transmiten tanto órdenes como información de temporización entre los módulos. Mejor dicho, es el que permite que no haya colisión de información en el sistema.

    El bus de direcciones es un canal del microprocesador totalmente independiente del bus de datos donde se establece la dirección de memoria del dato en tránsito.

    El bus de dirección consiste en el conjunto de líneas eléctricas necesarias para establecer una dirección.La capacidad de la memoria que se puede direccionar depende de la cantidad de bits que conforman el bus de direcciones, siendo 2n (dos elevado a la ene) el tamaño máximo en bytes del banco de memoria que se podrá direccionar con n líneas. Por ejemplo, para direccionar una memoria de 256 bytes, son necesarias al menos 8 líneas, pues 28 = 256. Adicionalmente pueden ser necesarias líneas de control para señalar cuando la dirección está disponible en el bus. Esto depende del diseño del propio bus.

    caracteristicas
    El Nombre “Intel Core i7″

    Aunque Intel aún no se han pronunciado acerca de la procedencia del nombre “i7″, se ha especulado mucho sobre este nombre en la web. No coincido con ninguna de estas especulaciones, por lo que publico aquí la mía. La letra “i” vendría de Intel, y el número haría referencia a la generación del procesador según la siguiente tabla.

    Generación 1: Abarcaría todos los procesadores de Intel hasta el 80188.
    Generación 2: El procesador Intel 286 y todas sus variantes.
    Generación 3: El procesador Intel 386 y todas sus variantes.
    Generación 4: El procesador Intel 486 y todas su variantes.
    Generación 5: El procesador Intel Pentium y todas sus variantes.
    Generación 6: El procesador Intel Core, Intel Core 2 y todas sus variantes.
    Generación 7: El procesador Intel Core i7.

    Cuatro unidades de dispatch en vez de tres, lo que se traduce en un 33% más de mejora de proceso de datos por parte del procesador. El Intel Core i7 podrá ejecutar cuatro microinstrucciones a la vez en lugar de las tres de Intel Core 2, consiguiendo un aumento considerable en velocidad.

    Además este procesador llevará un segundo buffer de 512-entradas TLB (Translation Look-aside Buffer). Este circuito es una tabla utilizada para convertir las direcciones físicas y virtuales por el circuito de memoria virtual. Añadiendo esta segunda tabla se mejora considerablemente el rendimiento del procesador.

    Un nuevo segundo buffer de predicción de bifurcaciones o BTB (Branch Target Buffer) y aumentando el tamaño del primer y este segundo nuevo buffer permitirá carga más instrucciones y predecir con más exactitud cual es la siguiente instrucción a procesador mejorando aún más el rendimiento del procesador.

    Destaca también el Turbo, que vuelve otra vez a los procesadores como en las épocas del 386. El modelo a 2,66 podría llegar a 2,8 con el Turbo en momentos de mucha demanda de proceso, trabajo y carga del procesador y bajaría la velocidad en momentos de reposo.

    Esto facilita también enormemente el trabajo de overclocking, pues aumentando el multiplicador del turbo se consiguen velocidades impresionantes con gran facilidad, claro que ello requiere disponer de buenos sistemas de refrigeración o disipación del procesador, así como aumentar los voltajes del mismo. Destacar que el modelo Extreme lleva el multiplicador desbloqueado, facilitando cualquier overcloking, mientras el resto de procesadores llevan el multiplicador bloqueado, impidiendo aumentar mucho el rendimiento del procesador, a no ser que se aumenten manualmente las frecuencias. Ya se puede ver en varias tiendas que están vendiendo ordenadores con este procesador con overcloking a 4,2 Ghz.
    Disponibilidad y Modelos.

    Inicialmente en octubre de 2.008 veremos los primeros modelos con socket LGA1366, cuatro núcleos y 8 Mb. de memoria caché, serán los Intel Core i7 a velocidades de 2,66 Ghz, 2,93 Ghz y en su version Extreme Editon a 3,2 Ghz con versiones de doble y triple canal de memoria DDR3 a 1066 y 1333 y 1600 MHz con buses de memoria de 1x 4.8 GT/s QuickPath, 1x 6.4 GT/s QuickPath y 2x QuickPath. El consumo de este procesador estará en 130 W.

    No hay comentarios:

    Publicar un comentario